Research at XRD1
XRD1 and its Users
The XRD1 beamline was among the first to become operational at Elettra and has been recently upgraded after more than ten years of function. Proposals requesting beamtime at XRD1 are submitted to the Elettra Proposal Review Panel for evaluation from heterogeneous group of researchers affiliated with national and international research centers and universities. The beamline is also actively involved in collaborations with industrial partners. |
Research Fields
The beamline exploits the higher part of the spectrum (above 17 keV) for molecular structure resolution of small natural or synthetic molecules, supramolecular and self-assembly, metal organic framework systems. The available k goniometer suits these measurements allowing the sample proper (re)orientation, critical for low-symmetry specimens. |
Browse our PublicationsRead our Highlights |
Protein Crystallography |
Small Molecules |
|
Protein crystallography is one of the most powerful techniques for the determination of 3D structure at atomic level of proteins and large cell macromolecules. The Si 111 monochromator allows to select the energy in the range 4 to 21 keV, in MAD experiments it is necessary to perform fine scans in wavelength to determine the absorption edge of a specific element |
|
The small molecules studies take advantage from the high intensity of the x-ray beam and from its natural collimation. |
Powder Diffraction |
Holography |
![]() |
Powder diffraction is an analytical tool for both qualitative and quantitative analysis of crystalline materials. It is widely used for polycrystalline compound. Synchrotron sources provide powerful tools to this technique that take advantage by intense and high collimated x-ray beams. |
![]() |
In the internal source holography, fluorescence from the atoms inside the sample is excited, and the emitted spherical wave, approaching the far-field detector directly, forms the holographic reference wave. In other direction it is scattered by neighbouring atoms, thus giving the holographic object wave. |
MOFs |
Grazing Incidence |
|
Metal–organic frameworks (MOFs) are a class of compounds consisting of metal ions or clusters coordinated to organic ligands to form one-, two-, or three-dimensional structures. They are often porous and have potential application as energy storage, gas and carbon capture materials |
|
Grazing incidence X-ray, typically from a crystalline structure, uses small incident angles for the incoming X-ray beam, so that diffraction can be made surface sensitive. It is used to study surfaces and layers because wave penetration is limited. |