BaDElPh Highlights
- BaDElPh Highlights
- Ferrimagnetism in graphene
- Anomalies at the DP in graphene
- CDW & Kondo effect in a Dirac semimetal
- QWS on bilayer graphene
- Flat band in graphene
- Antiferromagnetic TI
- MoS2 on Gr/Ir(111)
- EAL of low-energy electrons in solids
- SC in few-monolayer MgB2
- SOC induced gap in graphene
- Li-doped black phosphorous
- Rashba coupling amplification in BaNiS2
- High-quality graphene
- EPC and SC in graphene
- Surface-enhanced CDW in UD Bi(2201)
- Origin of electron accumulation in In2O3
- Impurity state in H-Graphene
- Gap and orbital character in Ba(FeCo)2As2
- Surface-umklapp at an organic-metal interface
- Quasiparticles at the Mott transition in V2O3
- All Pages
Quasiparticles at the Mott Transition in V2O3
|
We present a low photon energy angle resolved photoemission study of V2O3, a prototype system for the observation of Mott transitions in correlated materials. We show that the spectral features corresponding to the quasiparticle peak in the metallic phase present a marked wave vector dependence, with a stronger intensity along the GZ direction. The analysis of their intensity for different probing depths shows the existence of a characteristic length scale for the attenuation of coherent electronic excitations at the surface. This length scale, which is larger than the thickness of the surface region as normally defined for noncorrelated electronic states, is found to increase when approaching the Mott transition. These results are in agreement with the behavior of quasiparticles at |
surfaces as predicted by Borghi et al. [Phys. Rev. Lett. 102, 066806 (2009)]. Quasiparticles at the Mott Transition in V2O3: Wave Vector Dependence and Surface Attenuation
F. Rodolakis, B. Mansart, E. Papalazarou, S. Gorovikov, P. Vilmercati, L. Petaccia, A. Goldoni, J. P. Rueff, S. Lupi, P. Metcalf, M. Marsi, |
- << Prev
- Next