BaDElPh Highlights
- BaDElPh Highlights
- Ferrimagnetism in graphene
- Anomalies at the DP in graphene
- CDW & Kondo effect in a Dirac semimetal
- QWS on bilayer graphene
- Flat band in graphene
- Antiferromagnetic TI
- MoS2 on Gr/Ir(111)
- EAL of low-energy electrons in solids
- SC in few-monolayer MgB2
- SOC induced gap in graphene
- Li-doped black phosphorous
- Rashba coupling amplification in BaNiS2
- High-quality graphene
- EPC and SC in graphene
- Surface-enhanced CDW in UD Bi(2201)
- Origin of electron accumulation in In2O3
- Impurity state in H-Graphene
- Gap and orbital character in Ba(FeCo)2As2
- Surface-umklapp at an organic-metal interface
- Quasiparticles at the Mott transition in V2O3
- All Pages
Page 16 of 21
Surface-enhanced CDW instability in underdoped Bi(2201)-cuprates
|
Angle-resolved photoemission spectroscopy at low photon energy reveals a temperature-dependent evolution of the CuO2 plane band dispersion and apparent Fermi surface pockets in underdoped Bi2Sr2-xLaxCuO6+δ (Bi2201), which is directly associated with an hitherto-undetected evolution of the incommensurate superstructure periodicity below 130K. Surprisingly, this effect is limited to the surface (ARPES-LEED), with no corresponding temperature evolution in the bulk (XRD-REXS). These findings point to a surface-enhanced incipient charge-density-wave instability, driven by Fermi surface nesting. This discovery is of critical importance in the interpretation of single-particle spectroscopy data, and establishes |
the surface of cuprates and other complex oxides as a rich playground for the study of electronically soft phases. Retrieve article Surface-enhanced charge-density-wave instability in underdoped Bi2Sr2-xLaxCuO6+δ J.A. Rosen, R. Comin, G. Levy, D. Fournier, Z.-H. Zhu, B. Ludbrook, C.N. Veenstra, A. Nicolaou, D. Wong, P. Dosanjh, Y. Yoshida, H. Eisaki, G.R. Blake, F. White, T.T.M. Palstra, R. Sutarto, F. He, A. Fraño Pereira, Y. Lu, B. Keimer, G. Sawatzky, L. Petaccia, A. Damascelli, Nat. Commun. 4, 1977 (2013). doi: 10.1038/ncomms2977 This paper was selected as an Elettra Top Story. |
Last Updated on Monday, 30 December 2024 19:18