BaDElPh Highlights
- BaDElPh Highlights
- Ferrimagnetism in graphene
- Anomalies at the DP in graphene
- CDW & Kondo effect in a Dirac semimetal
- QWS on bilayer graphene
- Flat band in graphene
- Antiferromagnetic TI
- MoS2 on Gr/Ir(111)
- EAL of low-energy electrons in solids
- SC in few-monolayer MgB2
- SOC induced gap in graphene
- Li-doped black phosphorous
- Rashba coupling amplification in BaNiS2
- High-quality graphene
- EPC and SC in graphene
- Surface-enhanced CDW in UD Bi(2201)
- Origin of electron accumulation in In2O3
- Impurity state in H-Graphene
- Gap and orbital character in Ba(FeCo)2As2
- Surface-umklapp at an organic-metal interface
- Quasiparticles at the Mott transition in V2O3
- All Pages
Page 11 of 21
Spin-orbit coupling induced gap in graphene
|
By means of angle-resolved photoemission spectroscopy (ARPES), we show that intercalation of a Pb monolayer between the graphene sheet and the Pt(111) surface leads to formation of a gap of about 200 meV at the Dirac point of graphene. Spin-resolved photoemission (SRPES) measurements confirm the splitting to be of a spin−orbit nature, and the measured near-gap spin structure resembles that of the quantum spin Hall (QSH) state in graphene, proposed by Kane and Mele [Phys. Rev. Lett. 95, 226801 (2005)]. With a bandstructure tuned in this way, graphene acquires a functionality going beyond its intrinsic properties and becomes more attractive for possible spintronic applications. |
Retrieve articles
Spin−orbit coupling induced gap in graphene on Pt(111) with intercalated Pb monolayer I.I. Klimovskikh, M.M. Otrokov, V.Yu. Voroshnin, D. Sostina, L. Petaccia, G. Di Santo, S. Thakur, E.V. Chulkov, A.M. Shikin, ACS Nano 11, 368 (2017). doi: 10.1021/acsnano.6b05982 Reply to "Comment on 'ibid.'" ACS Nano 11, 10630 (2017). doi: 10.1021/acsnano.7b06779 This paper was selected as an Elettra Top Story. |
Last Updated on Monday, 30 December 2024 19:18