Highlights
- Highlights
- Position gold nanoparticles with DNA origami nanostructures
- Porous organosilicate films
- Nanoporous Carbon Supercapacitors
- Self-Assembly of the Cephalopod Protein Reflectin
- Low T route towards hybrid solar cells
- Ion tracks formation on surfaces
- Magnetic mesoporous assemblies
- Heavy Ion Irradiation of GaN
- Additives for Organic Photovoltaics
- Hybrid Solar Cells: Influence of Molecular Precursor
- 2-Step Perovskite Conversion
- Organic solar cells by in-operando GISAXS
- Nanoimprinted comb structures
- Nanomaterial coatings
- Zeolite nanoclusters
- Magnetron sputtered W films
- Anisotropic Ge QD lattices
- Control of lipid structuring
- Highly Luminescent Frameworks
- Fluid Bilayers
- Mesoporous carbons
- Preparation of ZnO particles
- Structural Characterization of MOF-5 crystals
- Evolution of protein coronas
- Nanochannels for nanofluidics
- Ordered Ge nanoclusters in amorphous matrix
- Anaesthesia
- Tutte le pagine
A new mechanism for mesostructure formation of ordered mesoporous carbons (OMCs) was investigated in situ
Figure 1. A) A typical SAXS pattern for the circular hexagonal structure in an AAM host, indexed in the circular hexagonal (p6mm) unit cell (B) with a lattice spacing of 15 nm. The squares show the reflections from the mesophases in the AAM pores while the circles show reflections from a top layer on the membrane. Reprinted with permission from Schuster et al. J. Am. Chem. Soc. 134, 11136 (2012). |
A new mechanism for mesostructure formation of ordered mesoporous carbons (OMCs) was investigated at the Austrian SAXS beamline at Elettra with in situ small-angle x ray scattering (SAXS) measurements: thermally induced selfassembly. Unlike the well-established evaporation-induced selfassembly (EISA), the structure formation for organic−organic self-assembly of an oligomeric resol precursor and the blockcopolymer templates Pluronic P123 and F127 does not occur during evaporation but only by following a thermopolymerization step at temperatures above 100 °C. |
The thermopolymerization step was investigated in detail with in situ grazing incidence small-angle x ray scattering (GISAXS, for films) and in situ SAXS (for AAMs). A typical SAXS pattern and a scheme of the corresponding unit cell for the circular hexagonal structure in an AAM are presented in Fig. 1. The processes in the thermally induced structure formation for this sample are illustrated in Fig. 2. After heating for 15 min at 130 °C, the first reflections related to a circular hexagonal structure start to appear. A diffuse ring attributed to worm-like phases is also visible, thus some parts are oriented randomly, while others already show the final orientation. Upon further heating the intensity of the reflection spots increases, and the structure becomes completely circular hexagonal. This shows that unlike in the case of mesostructured metal oxides, the structure formation in these systems does not occur during evaporation of the solvent but during the thermopolymerization step and should, therefore, rather be called thermally induced self-assembly. As a remarkable consequence, the mesostructure is not fixed but still flexible and can be controlled during this step. Moreover, we find that higher thermopolymerization temperatures result in increased unit cell parameters, caused by swelling of the liquid crystal structures of the block copolymer templates. The new mechanism discovered here offers additional opportunities for mesostructure control. We have demonstrated the influence of different temperatures during this thermally induced self-assembly on the final mesostructure, and we suppose that the change of other synthesis parameters, such as the vapor atmosphere, will also show significant effects and should thus be subject of further studies. Retrieve article
In Situ SAXS Study on a New Mechanism for Mesostructure Formation of Ordered Mesoporous Carbons: Thermally Induced Self-Assembly; |