Conceptual Design Reports
Page 13 of 16
CDR chapter 12 - Controls
The control system provides operators, machine physicists and scientists with a comprehensive and easy‑to‑use set of tools to control machine components and experimental beam lines. It is designed to be robust and reliable in order to insure long periods of operation without failures or malfunctions. Diagnosis and possibly repair capabilities are implemented in order to allow for remote recovery from malfunctions of both the equipment and the control system itself, with minimum impact on the facility operation. In general, the control system design is flexible enough to accommodate the specific requirements of a large variety of both conventional and highly specialized devices that are installed and controlled on the accelerator, the beamlines and the experimental stations. The control system consists of several computers distributed around the facility that interface with the different equipment and acquire data. A number of PC-based consoles allow to remotely operate the machine from the control room. Similar consoles in the experimental hall are used to control the experiments. A switched Ethernet network connects all the control system computers. State-of-art software technologies are employed, based on open standards and free open-source packages. A uniform and homogeneous software environment using the GNU/Linux operating system and the Tango control system software is adopted for the whole control system. A high level software framework supports model based design of machine physics applications. General purpose control room applications (graphical panels, synoptics, alarms, archiving, logging, etc.) are implemented using the Tango package software tools. ... |
Last Updated on Friday, 27 January 2023 15:50