Highlights
Glucose metabolism studied by low Energy XRF
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with 18fluorodeoxy-D-glucose (FDG) positron emission to- mography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 um2 spatial resolution in 3 um-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the en- dogenous background F signal was undetectable in brain.
To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 lm2 resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Mueller glia. In addition, FDG uptake was localized to periventric-ular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at 1 um resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue.
Retrieve article
Feasibility of Direct Mapping of Cerebral Fluorodeoxy-D-Glucose Metabolism In Situ at Subcellular Resolution Using Soft X-Ray Fluorescence;
C. Poitry-Yamate, A. Gianoncelli, B. Kaulich, G. Kourousias, A.W. Magill, M. Lepore, V. Gajdosik, R. Gruetter;
Journal of Neuroscience Research 2012.
doi:10.1016/j.nima.2009.06.035
Last Updated on Wednesday, 13 December 2023 17:27
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with 18fluorodeoxy-D-glucose (FDG) positron emission to- mography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 um2 spatial resolution in 3 um-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the en- dogenous background F signal was undetectable in brain.
To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 lm2 resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Mueller glia. In addition, FDG uptake was localized to periventric-ular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at 1 um resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue.
Retrieve article
Feasibility of Direct Mapping of Cerebral Fluorodeoxy-D-Glucose Metabolism In Situ at Subcellular Resolution Using Soft X-Ray Fluorescence;
C. Poitry-Yamate, A. Gianoncelli, B. Kaulich, G. Kourousias, A.W. Magill, M. Lepore, V. Gajdosik, R. Gruetter;
Journal of Neuroscience Research 2012.
doi:10.1016/j.nima.2009.06.035