Highlights
- Highlights
- Position gold nanoparticles with DNA origami nanostructures
- Porous organosilicate films
- Nanoporous Carbon Supercapacitors
- Self-Assembly of the Cephalopod Protein Reflectin
- Low T route towards hybrid solar cells
- Ion tracks formation on surfaces
- Magnetic mesoporous assemblies
- Heavy Ion Irradiation of GaN
- Additives for Organic Photovoltaics
- Hybrid Solar Cells: Influence of Molecular Precursor
- 2-Step Perovskite Conversion
- Organic solar cells by in-operando GISAXS
- Nanoimprinted comb structures
- Nanomaterial coatings
- Zeolite nanoclusters
- Magnetron sputtered W films
- Anisotropic Ge QD lattices
- Control of lipid structuring
- Highly Luminescent Frameworks
- Fluid Bilayers
- Mesoporous carbons
- Preparation of ZnO particles
- Structural Characterization of MOF-5 crystals
- Evolution of protein coronas
- Nanochannels for nanofluidics
- Ordered Ge nanoclusters in amorphous matrix
- Anaesthesia
- All Pages
Evolution of the protein corona of lipid gene vectors as a function of plasma concentration
|
The effective unit of interest in cell-nanomaterial interactions is not the nanoparticle itself but the particle and its hard corona of associated proteins from plasma or other bodily fluids. |
To focus on the evolution of the protein corona that forms around both CLs and lipoplexes upon exposure to plasma, one-dimensional (1D) Sodium Dodecyl Sulphate/PolyAcrylamide Gel Electrophoresis (SDS/PAGE) experiments were performed. Fig. 2 shows 1D SDS/PAGE gel results in which DOTAP CLs and DOTAP/ DNA lipoplexes were incubated in plasma, over a wide range of plasma concentrations (2.5%-80%). With increasing plasma concentration, the protein pattern for DOTAP CLs changes considerably (Fig. 2a), whereas for lipoplexes the intensity of the protein bands seem to increase monotonously with increasing plasma concentration (Fig. 2b). The identities of the proteins were determined by mass spectrometry analysis of selected bands cut from the gels reported in Figure 2a,b. We observed that the protein corona of CLs is made of both low-affinity and competitivebinding proteins whose relative abundance changes with the plasma concentration (Fig. 2c). On the other side, passing from low to high plasma concentrations, the protein corona of lipoplexes changes in abundance but not in composition (Fig. 2d). Such effects may be so striking that the biological identity of lipid gene vectors with DNA cargo confined in the interior space (e.g., LNP) may change dramatically as the amount of protein in the environment changes. Therefore, the evolution of the protein corona passing from in vitro to in vivo conditions is severely affected by the presence of DNA. This aspect should be carefully considered for the rational design of lipid gene vectors. Synchrotron SAXS experiments have revealed the structure of DOTAP CLs and DOTAP/DNA lipoplexes on the nanoscale. Such a nanostructure would have a deep impact on the adsorption of plasma proteins, which is to a large extent an electrostatically driven phenomenon. Retrieve article
Evolution of the Protein Corona of Lipid Gene Vectors as a Function of Plasma Concentration; |