Highlights
- Highlights
- Position gold nanoparticles with DNA origami nanostructures
- Porous organosilicate films
- Nanoporous Carbon Supercapacitors
- Self-Assembly of the Cephalopod Protein Reflectin
- Low T route towards hybrid solar cells
- Ion tracks formation on surfaces
- Magnetic mesoporous assemblies
- Heavy Ion Irradiation of GaN
- Additives for Organic Photovoltaics
- Hybrid Solar Cells: Influence of Molecular Precursor
- 2-Step Perovskite Conversion
- Organic solar cells by in-operando GISAXS
- Nanoimprinted comb structures
- Nanomaterial coatings
- Zeolite nanoclusters
- Magnetron sputtered W films
- Anisotropic Ge QD lattices
- Control of lipid structuring
- Highly Luminescent Frameworks
- Fluid Bilayers
- Mesoporous carbons
- Preparation of ZnO particles
- Structural Characterization of MOF-5 crystals
- Evolution of protein coronas
- Nanochannels for nanofluidics
- Ordered Ge nanoclusters in amorphous matrix
- Anaesthesia
- All Pages
Avoiding the Raft: Losartan´s Affinity to Fluid Bilayers
Figure 1. A possible scenario for losartan plasma membrane interactions is presented in panel E. Due to the denser lipid packing in the cholesterol rich rafts, losartan is likely to be excluded from this area, and preferentially found in the more fluid plasma membrane regions. Here losartan can accumulate and finally reach the AT1 receptor site. |
We examined losartan’s action in different biomimetic membrane models. Losartan is an angiotensin II receptor antagonist mainly used for the regulation of high blood pressure, and structural details on its incorporation into the biomembrane interface have been studied by small angle X-ray scattering. We found that losartan tends to avoid cholesterol-rich membrane domains. |
This indicates (i) a chain-saturation dependent competition of losartan with lipid-cholesterol interactions, and (ii) the insolubility of losartan in the liquid ordered phase of PCs. Consequently, losartan’s action is more likely to take place in fluid plasma membrane patches rather than in domains rich in cholesterol and saturated lipid species such as in membrane rafts. Figure 2. Structural results overview: Schematic illustration of POPC (A) and DMPC (B) bilayer structure alterations induced by losartan. In both cases the up-take of losartan leads to membrane unbinding (losartan concentration xLos = 0.2). At very high cholesterol concentrations losartan still finds shelter in the POPC-Chol bilayer (C), whereas it gets expelled from DMPC–Chol membranes (D) (xChol = 0.4). Retrieve article
Losartan's affinity to fluid bilayers modulates lipid-cholesterol interactions; |