ALOISA
Welcome to the Advanced Line for Overlayer, Interface and Surface Analysis
In summer 2016, the original wiggler/undulator of ALOISA has been replaced by a new undulator. The new photon energy range is about 130-1500 eV (with the storage ring operated at 2.0 GeV). |
Research HighlightsNO at a Surface-Bound Ni Porphyrinoid
A stable NO2 species forms at the Ni sites upon exposure to NO of a Nickel-tetraphenyl porphyrin monolayer grown on Cu(100). The NO uptake was characterized by a quantitative analysis of the NO2 formation rates. We conclude that NO2 origins via a disproportionation mechanism with an atomistic model of the reaction, paving the way towards future investigations on NO disproportionation at biomimetic single-atom sites. Anchoring geometry on the reactivity of NO2 -functionalized N-heterocyclic carbene
We demonstrated that the chemical reactivity of surface-anchored NO2-functionalized NHCs (NO2–NHCs) can be tuned by modifying the distance between the functional group and the reactive surface, which is governed by the deposition technique. Metal-porphyrins on ultra-thin transition metal- oxide layer
We focus on the role of an oxidized ultra-thin buffer-layer in passivating a buried metal substrate. Our evidence proves that, within the same molecule family, the topmost layer oxidation effectively decouples the electronic structure of the molecule from the metal substrate and allows one to Molecular LEGO: surface ligand effect for on-surface 3D self-assembly
Tailoring the hydration of melamine by on-surface confinement
Melamine is the building block of polymeric carbon nitrides (p-CNH), that are able to catalyze the water-splitting reaction under visible light irradiation. We reveal that, upon water adsorption, two adjacent melamine molecules concurrently work for stabilizing the H-bonded water-catalyst complex. Probing photo-induced lattice distortion
We have investigated the photo-induced dynamics of a 2H-MoTe2 crystal. We detect two distinct phenomena: (1) structural deformations in the out-of-plane direction with lifetime in the sub-nanosecond regime and (2) a surface photovoltage shift that persists for microseconds. These results show that high-resolution time-resolved photoemission, combined with theoretical simulations, provides valuable informations not only on electronic and chemical modifications of photoexcited systems, but also on lattice distortions and phase transitions.
012345
|
User Area
Proposal SubmissionThe Users must contact in advance the beamline responsible to evaluate 1) the proposal feasibility and 2) the most appropriate Review Panel. The local contact can also help the Users to single out which alternative beamlines are better suited to their requirements. We invite Users and collaborators to discuss their proposals with the beamline staff before the submission deadline. |
Call for proposalsThe deadline for proposal submission for beamtime allocation is to be announced For the proposal submission, Users must first register themselves at the Elettra Virtual User Office at the link https://www.elettra.eu/userarea/access-request.html |
Quick Links |