

Andrea Damascelli Charge order in cuprates: From hole to electron doping

Max Planck - UBC Quantum Matter Institute

A "few" acknowledgments

UBC - **ARPES** group **Riccardo Comin** E.H. da Silva Neto Jonathan Rosen Giorgio Levy Bart Ludbrook Christian Veenstra Alessandro Nicolaou Ludivine Chauviere Ilya Elfimov Andrea Damascelli

Harvard – STM

Mike Yee Yang He A. Soumyanarayanan Jenny Hoffman MPI Stuttgart – RXS

Alex Frano Mathieu Le Tacon Bernhard Keimer

UBC/CLS – RXS

uantum

Matter

nstitute

Ronny Sutarto Feizhou He Ilya Elfimov George Sawatzky

UBC – Supercond.

Ruixing Liang Doug Bonn Walter Hardy BESSY – RXS

Enrico Schierle Eugen Weschke

ELETTRA

Luca Petaccia

Groningen -- XRD

Graeme Blake Thomas Palstra

AIST – Japan

Yoshiyuki Yoshida Hiroshi Eisaki

University of Maryland

Yeping Jiang Rick Greene

Charge order in high-T_c cuprates

Spontaneous segregation of charge carriers (holes) in the very lightly doped square CuO₂ plane

D. Poilblanc, T. M. Rice, PRB **39**, 9749 (1989)
J. Zaanen, O. Gunnarsson, PRB **40**, 7391 (1989)
K. Machida, Physica C: Supercond. **158**, 192 (1989)
V. J. Emery, S. A. Kivelson, H. Q. Lin, PRL **64**, 475 (1990)

Evidence for stripe correlations of spins and holes in copper oxide superconductors

J. M. Tranquada^{*}, B. J. Sternlieb[†], J. D. Axe^{*}, Y. Nakamura[†] & S. Uchida[†]

<u>|995</u>

2012

REPORTS

A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi₂Sr₂CaCu₂O_{8+δ}

J. E. Hoffman,¹ E. W. Hudson,^{1,2*} K. M. Lang,¹ V. Madhavan,¹ H. Eisaki,³[†] S. Uchida,³ J. C. Davis^{1,2}[‡]

Quantum oscillations and the Fermi surface in an $\frac{2007}{1000}$ underdoped high- T_c superconductor

Nicolas Doiron-Leyraud¹, Cyril Proust², David LeBoeuf¹, Julien Levallois², Jean-Baptiste Bonnemaison¹, Ruixing Liang^{3,4}, D. A. Bonn^{3,4}, W. N. Hardy^{3,4} & Louis Taillefer^{1,4}

Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa₂Cu₃O_y

<u>2011</u>

Tao Wu¹, Hadrien Mayaffre¹, Steffen Krämer¹, Mladen Horvatić¹, Claude Berthier¹, W. N. Hardy^{2,3}, Ruixing Liang^{2,3}, D. A. Bonn^{2,3} & Marc-Henri Julien¹

<u>2012</u>

Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba₂Cu₃O_{6+x}

G. Ghiringhelli,¹* M. Le Tacon,² M. Minola,¹ S. Blanco-Canosa,² C. Mazzoli,¹ N. B. Brookes,³ G. M. De Luca,⁴ A. Frano,^{2,5} D. G. Hawthorn,⁶ F. He,⁷ T. Loew,² M. Moretti Sala,³ D. C. Peets,² M. Salluzzo,⁴ E. Schierle,⁵ R. Sutarto,^{7,8} G. A. Sawatzky,⁸ E. Weschke,⁵ B. Keimer,²* L. Braicovich¹

D. Poilblanc, T. M. Rice, PRB **39**, 9749 (1989) J. Zaanen, O. Gunnarsson, PRB **40**, 7391 (1989) Direct observation of competition between superconductivity and charge density wave order in $YBa_2Cu_3O_{6.67}$

J. Chang^{1,2}*, E. Blackburn³, A. T. Holmes³, N. B. Christensen⁴, J. Larsen^{4,5}, J. Mesot^{1,2}, Ruixing Liang^{6,7}, D. A. Bonn^{6,7}, W. N. Hardy^{6,7}, A. Watenphul⁸, M. v. Zimmermann⁸, E. M. Forgan³ and S. M. Hayden⁹

K. Machida, Physica C: Supercond. **158**, 192 (1989) V. J. Emery, S. A. Kivelson, H. Q. Lin, PRL **64**, 475 (1990)

Evidence for stripe correlations of spins and holes in copper oxide superconductors

J. M. Tranquada^{*}, B. J. Sternlieb[†], J. D. Axe^{*}, Y. Nakamura[†] & S. Uchida[†]

<u>|995</u>

Quantum oscillations and the Fermi surface in an $\frac{2007}{1000}$ underdoped high- T_c superconductor

Nicolas Doiron-Leyraud¹, Cyril Proust², David LeBoeuf¹, Julien Levallois², Jean-Baptiste Bonnemaison¹, Ruixing Liang^{3,4}, D. A. Bonn^{3,4}, W. N. Hardy^{3,4} & Louis Taillefer^{1,4}

<u>2012</u>

Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba₂Cu₃O_{6+x}

G. Ghiringhelli, ¹* M. Le Tacon, ² M. Minola, ¹ S. Blanco-Canosa, ² C. Mazzoli, ¹ N. B. Brookes, ³ G. M. De Luca, ⁴ A. Frano, ^{2,5} D. G. Hawthorn, ⁶ F. He, ⁷ T. Loew, ² M. Moretti Sala, ³ D. C. Peets, ² M. Salluzzo, ⁴ E. Schierle, ⁵ R. Sutarto, ^{7,8} G. A. Sawatzky, ⁸ E. Weschke, ⁵ B. Keimer, ²* L. Braicovich ¹

D. Poilblanc, T. M. Rice, PRB **39**, 9749 (1989) J. Zaanen, O. Gunnarsson, PRB **40**, 7391 (1989) K. Machida, Physica C: Supercond. **158**, 192 (1989) V. J. Emery, S. A. Kivelson, H. Q. Lin, PRL **64**, 475 (1990)

Cuprates: a favourite physicist's playground

Cuprates: a favourite physicist's playground

Cuprates: a favourite physicist's playground

Comin et al, Science 340, 390-392 (2014)

RXS – Resonant X-ray Scattering

ARPES-XRD-RXS on same compound

ARTICLE

Received 15 Oct 2012 | Accepted 3 May 2013 | Published 1 Jul 2013

DOI: 10.1038/ncomms2977

Surface-enhanced charge-density-wave instability in underdoped $Bi_2Sr_{2-x}La_xCuO_{6+\delta}$

J.A. Rosen¹, R. Comin^{1,*} G. Levy^{1,2}, D. Fournier¹, Z.-H. Zhu¹, B. Ludbrook¹, C.N. Veenstra¹, A. Nicolaou^{1,2}, D. Wong¹, P. Dosanjh¹, Y. Yoshida³, H. Eisaki³, G.R. Blake⁴, F. White⁵, T.T.M. Palstra⁴, R. Sutarto⁶, F. He⁶, A. Fraño Pereira^{7,8}, Y. Lu⁷, B. Keimer⁷, G. Sawatzky^{1,2}, L. Petaccia⁹ & A. Damascelli^{1,2}

Connect charge order to Fermiology?

Structural Origin of Apparent Fermi Surface Pockets in Angle-Resolved Photoemission of Bi₂Sr_{2-x}La_xCuO_{6+δ}

P. D. C. King,¹ J. A. Rosen,² W. Meevasana,^{1,3} A. Tamai,¹ E. Rozbicki,¹ R. Comin,² G. Levy,² D. Fournier,² Y. Yoshida,⁴ H. Eisaki,⁴ K. M. Shen,⁵ N. J. C. Ingle,⁶ A. Damascelli,^{2,7} and F. Baumberger^{1,*}

Structural Origin of Apparent Fermi Surface Pockets in Angle-Resolved Photoemission of $Bi_2Sr_{2-x}La_xCuO_{6+\delta}$

P. D. C. King,¹ J. A. Rosen,² W. Meevasana,^{1,3} A. Tamai,¹ E. Rozbicki,¹ R. Comin,² G. Levy,² D. Fournier,² Y. Yoshida,⁴ H. Eisaki,⁴ K. M. Shen,⁵ N. J. C. Ingle,⁶ A. Damascelli,^{2,7} and F. Baumberger^{1,*}

ARPES at 100K along Nodal Direction - Underdoped

Rosen, Comin, et al., Nat. Comm. 4, 1977 (2013)

ARPES at 100K along Nodal Direction - Underdoped

Rosen, Comin, et al., Nat. Comm. 4, 1977 (2013)

Careful Temperature Dependence in LEED

Rosen, Comin, et al., Nat. Comm. 4, 1977 (2013)

T=6K

 Q_2

Careful Temperature Dependence in LEED

Rosen, Comin, et al., Nat. Comm. 4, 1977 (2013)

Careful Temperature Dependence in LEED

Rosen, Comin, et al., Nat. Comm. 4, 1977 (2013)

Q2 evolution agrees in LEED and ARPES

- 30% change in Q₂ over 130K temperature range
- Q₂ wavelength changes from 43-66 Å

Bulk Sensitive XRD and REXS

RXS (8.9 keV)

Long-range ordered Q1 and Q2 modulations in the bulk.

Rod-like Q2 superstructure, lack of c-axis coherence

NO temperature dependence in the bulk! Q₂ XRD/REXS value matches Q₂(5K) in ARPES/LEED

Mean Field Analysis of the Surface CDW

Surface Q_2 CDW coupled to a static bulk Q_1 - Q_2 modulation Minimization of CDW free energy with respect Q and amplitude

The bulk potential V_B pins the surface CDW suppressing its T dependence

 $Q_2=Q_1/2 \rightarrow AN$ nesting $Q_2=Q_1/3 \rightarrow N$ nesting

 $Q_2 = Q_1/3$ nesting vanishes with p

Electronically soft phases exist at the surface of Bi2201

Bi2201 Q-space Overview

Unified Charge-Order Phenomenology?

REPORTS

Science 340, 390-392 (2014)

Charge Order Driven by Fermi-Arc Instability in $Bi_2Sr_{2-x}La_xCuO_{6+\delta}$

R. Comin, A. Frano,^{2,3} M. M. Yee,⁴ Y. Yoshida,⁵ H. Eisaki,⁵ E. Schierle,³ E. Weschke,³ R. Sutarto,⁶ F. He,⁶ A. Soumyanarayanan,⁴ Yang He,⁴ M. Le Tacon,² I. S. Elfimov,^{1,7} Jennifer E. Hoffman,⁴ G. A. Sawatzky,^{1,7} B. Keimer,² A. Damascelli^{1,7}*

RXS-ARPES-STM on same compound Connect charge order to Fermiology

Electronic charge ordering in Bi2201 – RXS

Charge modulation in CuO_2 planes!

Comin et al, Science 340, 390-392 (2014)

Electronic charge ordering in Bi2201 – RXS/STM

CO in both RXS & STM, with onset T_{CO} ~T*

Comin et al, Science 340, 390-392 (2014)

Connection between charge ordering and Fermiology

Approximation to full susceptibility using particle-hole bubble

$$\chi(\mathbf{Q}, i\Omega_n) = \frac{1}{V} \cdot \frac{1}{\beta} \sum_{\mathbf{k}, i\omega_m, \sigma} G(\mathbf{k} + \mathbf{Q}, i\omega_m + i\Omega_n, \sigma) \cdot G(\mathbf{k}, i\omega_m, \sigma)$$

No AN nesting - CO driven by Fermi-arc instability Comin et al, Science 340, 390-392 (2014) Charge ordering in Bi2201 – Link to pseudogap fermiology

No antinodal Fermi surface nesting

CDW driven by end-of-Fermi-arc (hot spots) instability Comin et al, Science 340, 390-392 (2014)

YBCO: 1D Charge-Order!

Broken translational and rotational symmetry via stripe order in underdoped YBa₂Cu₃O_{6+y}

R. Comin,^{*,1}R. Sutarto,² E. H. da Silva Neto,^{1,3,4} L. Chauviere,^{1,3,4} R. Liang,^{1,3} W. N. Hardy,^{1,3} D. A. Bonn,^{1,3} F. He,² G. A. Sawatzky,^{1,3} and A. Damascelli^{*,1,3}

Submitted (2014)

YBCO: d-wave bond order!

The symmetry of charge order in cuprates

R. Comin,^{1,)} R. Sutarto,² F. He,² E. da Silva Neto,^{1,3,4} L. Chauviere,^{1,3,4} A. Frano,^{4,5} R. Liang,^{1,3} W.N. Hardy,^{1,3} D.A. Bonn,^{1,3} Y. Yoshida,⁶ H. Eisaki,⁶ J. E. Hoffman,⁷ B. Keimer,⁴ G.A. Sawatzky,^{1,3} and A. Damascelli^{1,3,†}

arXiv:1402.5415 (2014)

Charge Ordering in electron-doped cuprates ?

Charge ordering in the electron-doped superconductor $Nd_{2-x}Ce_xCuO_4$

Eduardo H. da Silva Neto^{2,3,4,*} Riccardo Comin^{,2,*} Feizhou He,⁵ Ronny Sutarto,⁵ Yeping Jiang,⁶ Richard L. Greene,^{6,4} George A. Sawatzky,^{1,2,4} and Andrea Damascelli^{1,2,4,†}

Science, in press (2014)

Electron vs. hole-doping asymmetry in Cuprates

Charge Ordering in Nd_{2-x}Ce_xCuO₄ !

Resonance

Electronic origin of CO (CuO_2 plane)

Similar to RXS signal on Bi-based cuprates

CO Temperature Dependence in NCCO

CO onsets at a higher temperature than pseudogap ($T_{CO} > T^*$)

CO Temperature Dependence in NCCO

CO onsets at a higher temperature than pseudogap ($T_{CO} > T^*$) Charge ordering onsets with AF spin fluctuations

E.M. Motoyama et al. Nature (2007)

Connection Between CO and Fermiology

No gap near $(\pi, 0) =>$ Incompatible with conventional nesting Connects the AF zone boundary ?

 Q_{CO} similar to hole-doped systems ($\xi = 25 - 35$ Angstroms)

Connection to new collective mode by RIXS As suggested by the temperature dependence

Lee et al. arXiv 13084740

Also see Ishii et al. Nat Comm 5, 3714 (2014)

Conclusions

RXS – ARPES – STM Bulk / surface + real /momentum space

> Resonant soft X-ray scattering Charge order in Bi2201 below T*

> > Connect CO to fermiology Fermi-arcs, no AN nesting

Ubiquitous stripe order in hole-doped cuprates Longitudinal correlations compete with SC

Symmetry of CO: d-wave bond order

Charge order in cuprates: hole to electron doping

R. Comin et al., Science 340, 390 (2014)

E.H. da Silva Neto et al., arXiv:1410.2253 (2014)

Do specifics of the participating states matter for charge order formation?

