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Outline:
• How to build an excellent x-ray source 

using Einsteinʼs relativity :
– Collimation
– Photon energy range
– Brightness
– Polarization
– Undulators, bending magnets, wigglers 

• Coherent x-rays: a revolution in radiology
• From storage rings to free electron lasers
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General scheme 
of a synchrotron 
facility Magnets + electrons

 ---> Lorentz force 
---> acceleration 
---> emission of 
electromagnetic 

waves
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Angular Collimation:

Take a photon emitted (blue arrow) in a near-trasverse 
direction in the (black) electron frame, with velocity 
components cx ≈ 0, cy ≈ c. In the (green) laboratory frame the 
velocity (red arrow) components become cx’ ≈ u, cy’≈ (c2 - u2)1/2 
= c/γ. The angle θ’ is ≈ cy’/c = 1/γ -- very narrow!!! 

Electrons circulating at a speed u ≈ c in a 
storage ring emit photons in a narrow 
angular cone, like a “flashlight”: why?
Answer: RELATIVITY

Seen in the electron 
reference frame, the 

photon are emitted in 
a wide angular range

But in the 
laboratory frame 

the emission 
shrinks to a 
narrow cone
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Fireplaces and torchlights :
A fireplace is not very effective 

in "illuminating" a specific 
target: its emitted power is 

spread in all directions

This can be expressed 
using the “brightness”

A torchlight is much more effective: it is a 
small-size source with emission 

concentrated within a narrow angular spread



Brightness = constant ______
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The “brightness” (or brilliance) of a 
source of light :

F
ξ 2 Ω

ξ

Source 
area, ≈ ξ 2

Flux, F
Angular 
divergence,
solid angle Ω
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The historical 
growth in x-ray 

brightness/brilliance

Between 1955 and 2000, 
the brightness increased 

by more than 15 orders of 
magnitude… whereas the 

top power of computing 
increased “only” by 6-7 

orders of magnitude 
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A real synchrotron facility: 
Diamond (UK)
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Why x-rays and ultraviolet?
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synchrotron
radiation

atom or
molecule

scattered 
photons, 
fluorescence

small-angle scattering

fluorescence spectroscopy

photoelectrons, 
Auger electrons

photoelectron/Auger 
spectroscopy

transmitted 
photons

absorption spectroscopy

EXAFS

molecular
fragments

fragmentation spectroscopy

solid
scattered photons scattering

photoelectrons, 
Auger electrons
photoelectron/Auger 
spectroscopy

transmitted 
photons

absorption spectroscopy

EXAFS

fluorescence spectroscopyfluorescence

diffracted photons X-graphy

Atoms & 
molecules

desorption spectroscopy

Synchrotron x-rays:
Many different interactions

↓
Many different applications
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7 August 1968, 10:40 a.m.: 
Ulrich Gehrardt performs on 
Tantalus the first experiment 
with a dedicated synchrotron 
source:
ONLY 43 YEARS AGO!!!

1966:  Fred Brown (Urbana) proposes to Ed 
Rowe, the father of Tantalus, to use it as the 
first dedicated synchrotron source
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Historical  Growth: 
Worldwide ISI data 1968-2011, 
Keywords: “synchrotron” or “free 
electron laser”

1968: 64
1980: 240
1990: 1,010
2000: 4,674
2010: 6,763

Synchrotron and Free Electron Laser 
Facilities in the World (2011): 

64 in 27 Countries
(operating or under construction)
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General scheme 
of a synchrotron 
facility
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Why do the electrons in an 
undulator emit x-rays?

That is a puzzle: the typical undulator period, L, is of the 
order of centimeters -- whereas the x-ray wavelengths are 

of the order of Angstroms!!!
The key to understand: Einsteinʼs relativity -- with its factor 

γ = (1 - u 2/c 2)-1/2 (order of magnitude: 103-104) 

- e
X-rays

L
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So, why short x-ray wavelengths?
The wiggler point of view: an electron 
arrives at a speed u ≈ c 

The electron point of view: 
• A periodic transverse B-field arrives at speed ≈ -c
• Its Lorentz transformation is a transverse B-field 

plus a transverse E-field perpendicular to it.
• The period L is Lorentz-contracted to Lʼ ≈ L/γ
• Thus, the electron “sees” the wiggler like a photon 

wave with wavelength ≈L/γ 

L

Lʼ ≈ L /γ

• The electron scatters this “wave”: this is the cause of its photon emission.
• The wavelength in the laboratory frame is Doppler-shifted by ≈2γ, 

becoming λ ≈ L/2γ 2

• Since γ is very large, λ corresponds to x-rays! 

≈c

≈ -c
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In summary, what produces the 
high brightness of a real 

synchrotron source?
• Free electrons can emit more power than bound 
electrons --> high flux

• The control of the electron beam trajectories in 
the storage ring is very sophisticated: small 
transverse beam cross section --> small photon 
source size

• Relativity drastically reduces the angular 
divergence of  the emitted synchrotron radiation
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...and now, 
can we all 

go to the 
beach?

…sorry again folks, later... (maybe)
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General scheme 
of a synchrotron 
facility
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3 types of sources:

1. Undulators:
small

undulations

detector
continuously 
illuminated

time

long
signal 
pulse

frequency

hν/Δhν 
≈ N

detector

narrow 
band
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3 types of sources:

2. Bending magnets:

short
signal 
pulse

broad
band

time frequency
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3 types of sources:

3. Wigglers: large
undulations

Series of 
short 

pulses

broad
band

frequencytime
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Controlling the undulator wavelength:

Starting point: we have seen 
that λ ≈ λo = L/2γ 2, so λ could 
be changed by changing γ 
(i.e., the electron energy)

Plus: the electron oscillations and the 
transverse velocity are proportional to the 
wiggler B-field. The Lorentz force does no 
work so the kinetic energy is constant: as 
the transverse velocity increases, the 
longitudinal velocity u decreases. 
This effectively changes γ = (1-u 2/c 2)-1/2, so 
that λ can be modified by tuning B. 

L

≈c



XI Scuola di Luce di Sincrotrone - Duino 2011

Controlling the x-ray 
wavelength (continues):

In detail: 
• The transverse velocity vT is proportional to the B-field strength B
• The kinetic energy stays constant, so the longitudinal speed squared 

changes from u 2 to (u 2 - vT
2)  

• This effectively changes 1/γ 2 from (1-u 2/c 2) to (1 - u 2/c 2 - vT
2/c 2) 

• And λ changes from λo ≈ (L/2)(1 - u 2/c 2) to λ ≈ λo(1 - K 2/2), where K 2 
is proportional to B 2

Note: this is the “central” emitted wavelength -- there 
is a wavelength band Δλ around it

In fact: 
• An electron going through an undulatorr with NW periods emits a train 

of Nu wavelengths, with length NWλ and duration Δt = NWλ/c 
• Fourier transform (frequency): Δν = c/NWλ = ν/NW 
• Δλ/λ = Δν/ν = 1/NW
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Bending magnet emission spectrum:
The (relativistic) rotation frequency of 
the electron determines the (Doppler-
shifted) central wavelength: 
λo = (1/2γ 2)(2πcmo/e)(1/B )

The “sweep time” δt of the emitted light  
cone determines the frequency spread 
δν and the wavelength bandwidth:
Δλ / λo = 1
 A peak centered at λc 

with width Δλ: is this 
really the well-known 
synchrotron spectrum?
YES -- see the log-log 
plot:

λλ0

Δλ

log(λ)

λo

lo
g(

em
is

si
on

)
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Synchrotron light polarization:
Electron in a storage ring:

TOP VIEW

TILTED VIEW

SIDE VIEW

Polarization:
Linear in the 

plane of the ring, 
elliptical out of 

the plane

Special (elliptical) wigglers and 
undulators can provide ellipticaly 
polarized light with high intensity
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fluorescent 
screen

screen with 
pinhole

Coherence: “the property that enables a 
wave to produce visible diffraction and 

interference effects” 

θ
source 

(Δλ)

ξ

Example:

The diffraction pattern may or may not be visible on the 
fluorescent screen depending on the source size ξ, on 
its angular divergence θ and on its wavelength 
bandwidth Δλ
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Longitudinal (time) coherence: 

• Condition to see the pattern: Δλ/λ < 1
• Parameter characterizing the longitudinal coherence: 

“coherence length”: Lc = λ2/Δλ
• Condition of longitudinal coherence: Lc > λ

source 
(Δλ)
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Lateral (space) coherence — analyzed with a 
source formed by two point sources: 

• Two point sources produce overlapping patterns: diffraction 
effects may no longer be visible.

• However, if the two source are close to each other an overall 
diffraction pattern may still be visible: the condition is to 
have a large “coherent power” ≈(λ/ξθ )2
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Coherence — summary: 
• Coherence in general requires a large 

coherence volume L2λ4/(ξ 2Δλ) = Lc (L2λ2/ξ 2)
• Longitudinal coherence: requires a large 

coherence length Lc = λ2/Δλ 
• Lateral coherence: requires a large 

coherent power ≈ (λ/ξθ )2

• Both difficult to achieve for small 
wavelengths (x-rays)

• The geometric conditions for large (λ/ξθ )2 
are the same as for high brightness
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Light-matter Interactions in Radiology:

Absorption -- described 
by the absorption 
coefficient α

Refraction (and 
diffraction/interference) -- 
described by the 
refractive index n

For over one century, radiology was based on 
absorption: why not on refraction /diffraction?
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Conventional radiology

Refractive-index radiology (Giuliana Tromba)
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“Refraction” x-ray imaging:

Edge between 
regions with 
different n-values

detector Detected
intensity

Idealized edge image

Real 
example 
(frog egg)
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Examples of 
“refraction” radiology:
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Building on bubbles (zinc 
electrodeposition):

substrate
overlayer

gas bubbles
solution
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X-ray (micro)tomography:

A single (projection) x-ray 
image does not deliver 
three-dimensional 
information

In tomography, many x-
ray images taken at 
different angles are 
processed to obtain 
different views of the 
object in three dimensions 
-- for examples “slices”
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Phase contrast micro-tomography: housefly
Yeukuang Hwu, Jung Ho Je et al. 



XI Scuola di Luce di Sincrotrone - Duino 2011

From detection 
to treatment? 

Y. S. Chu, J. M. Yi, F. De 
Carlo, Q. Shen, W.-K-

Lee, H. J. Wu, C. L. 
Wang, J. Y. Wang, C. J. 

Liu, C. H. Wang, S. R. 
Wu, C. C. Chien, Y. Hwu, 

A. Tkachuk, W. Yun, M. 
Feser, K. S. Liang, C. S. 

Yang, J. H. Je, G. 
Margaritondo

Agglomerated Au nanoparticles 
attached to cancer cells
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New types of sources:

• Ultrabright storage rings (SLS, new 
Grenoble project) approaching the 
diffraction limit

• X-ray and Ultraviolet X-ray free 
electron lasers (FELʼs)

• Energy-recovery machines 
• Inverse-Compton-scattering table-top 

sources
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John Made, 
inventor of 

the FEL

Claudio Pellegrini, 
UCLA -- leader of 
the X-FEL theory
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The ingredients of a normal lasers:

Active medium: provides 
the “optical amplification” 

of the photon beam

Optical cavity: increases the photon beam 
path and the optical amplification

Optical pump: 
puts in the 

active medium 
the energy to 
be converted 
into photons

Result: 
collimated, 

intense, bright 
and coherent 
photon beam
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Normal lasers ---> x-ray laser:

Active medium: no gas, solid or liquid 
but “free electrons” in an accelerator: 
hight power possible without damage 

No x-ray mirrors --> no optical cavity --> enough 
amplification needed for one-pass lasing

Optical pump: 
the free 

electrons 
provide the 
energy and 
transfer it to 
the photons

Result: 
collimated, 

intense, bright 
and coherent 
x-ray beam
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Free-electron lasers (FELʼs):
To emit photons and 

produce optical 
amplification, the 

electrons brought to 
(almost) the speed of 

light by an accelerator 
(for example, a LINAC 

or a storage ring) must 
pass through a 

“Wiggler” 
“Wiggler” (a 

periodic series 
of magnets)

Electron 
accelerator

Electron beam

X-ray beam
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This is what happens in detail:

The combined wiggler+wave action 
progressively microbunches the 

electrons. The emission of 
microbunched electrons enhances 

the previously emitted waves 

A bunch of electrons 
enters the wiggler: 

some of them 
stochastically start 

emitting waves
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Microbunching makes the 
difference: this is what happens 
from the electron point of view:

With no microbunching, 
as electrons enter the 

wiggler, they emit in an 
uncorrelated way

Instead, the electrons 
in the wiggler-induced 
microbunches emit in 

a correlated way, 
enhancing previously 

emitted waves
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What microbunches 
the electrons?

Wiggler-induced electron 
oscillations (v = transverse velocity)

Two key 
ingredients:

The wave B-field and the electron 
transverse velocity v produce a 

Lorentz force f pushing the electrons 
towards zero-field points: this causes 

microbunching

Previously emitted photon wave 
with its E-field and B-field

B

E
v

f



XI Scuola di Luce di Sincrotrone - Duino 2011

…but something seems wrong: after 1/2 wiggler period, the electron 
transverse velocity is reversed. If the wave travels together with the electron, 
the B-field stays the same. Are the forces and the microbunching reversed? 

No! Electron and wave do not travel together: the electron speed is u < c. As 
the electron travels over L/2 in a time L/(2u), the wave travels over [L/(2u)]c. 

The difference is (L/2)(c/u - 1)≈ L/(4γ 2) = half wavelength 

L/2

the forces are not reversed, microbunching continues

L/2 + λ/2
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Why is microbunching (and 
lasing) more difficult for x-rays 
than for longer wavelengths? 

On one hand, at short wavelengths the 
microbunches are closer to each other and 

this facilitates microbunching

But: 
• Short wavelengths require a high electron energy corresponding 

to a large γ - factor
• The large γ makes the electrons “heavy” and therefore difficult to 

move towards microbunches: their transverse relativistic mass is 
γ mo and the longitudinal relativistic mass (directly active in the 
microbunching mechanism) is γ 3mo 

• This offsets the advantage of closer microbunches, making 
microbunching difficult

λ
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…until maximum 
microbunching is reached 

and the gain saturates

Microbunching produces 
correlated emission 
proportional to the square of the 
number of electrons, and a wave 
intensity gain

Because of the gain, the 
wave intensity increases 

exponentially with the 
distance in the wiggler… 

Wave 
intensity

Distance

For an x-ray FEL (no 2-mirror cavity), gain saturation must be reached 
before the end of the (very long) wiggler, in a single pass 
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Why the exponential intensity increase?
• The total energy transfer rate from the electron beam to a pre-

existing wave of intensity I is determined by two factors: (1) the 
transfer rate for each single electron (2) the effects of 
microbunchig

• The one-electron transfer rate is given by the (negative work) 
proportional to E v , where E = the wave (transverse) E-field and 
v = the electron transverse velocity. 

• But E is proportional to I 1/2 so the energy transfer rate for one 
electron is proportional to I 1/2 

• The effects of microbunching are proportional to the Lorentz 
force that causes it, which is produced by vT and by the B-field B 
of the pre-existing wave. Since B is proportional to I 1/2 , they give 
another factor I 1/2 

• Overall, dI/dt is proportional to I 1/2 I 1/2 = I
• This corresponds to an exponential increase as a function of t 

and therefore also of the distance = ut
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An FEL emits very short pulses:
The basic physics -- we have seen that: 
• One electron emits a wave train of 

length Nwλ
• The duration of this train is Nwλ/c 

Take for example Nw = 3x103 and λ = 10 angstrom: the duration 
is 10-16 s = 0.1 femtoseconds  

• The real pulse duration and time structure are 
determined by the length and shape of the electron 
bunches and by other factors in the wave emission 
process

• But the real pulse duration can still reach the 
femtosecond range
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The FERMI X-FEL 
at Elettra, Trieste

The European X-FEL 
project underway at 

DESY, Hamburg

The Swiss X-FEL at the 
Paul-Scherrer Institut
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• The EPFL colleagues (Marco Grioni, Davor Pavuna, 
Mike Abrecht, Amela Groso, Luca Perfetti, Eva 
Stefanekova, Slobodan Mitrovic, Dusan Vobornik, 
Helmuth Berger, Daniel Ariosa, Johanna Generosi, 
Vinko Gajdosic, Primoz Rebernik).

• The POSTECH colleagues (group of Jung Ho Je).
• The Academia Sinica Taiwan colleagues (group of 

Yeukuang Hwu).
• The Vanderbilt colleagues (group of Norman Tolk).
• The ISM-Frascati colleagues (group of Antonio 

Cricenti and Paolo Perfetti)
• The facilities: PAL-Korea, Elettra-Trieste, Vanderbilt 

FEL, SRRC-Taiwan, APS-Argonne, SLS-Villigen, 
LURE-Orsay 

Thanks to:



A source of size ξ and bandwidth Δλ can illuminate coherently a volume ΔxΔyΔz at 
the distance L. Let us see what is this coherence volume.
Along x : if two waves of wavelength λ and λ + Δλ are in phase ar a certain time, 
they will be out of phase after Δt such that ΔωΔt = 2π or Δt = 2π/Δω = λ2/(cΔλ ) .
Thus, Δx = cΔt = λ2/Δλ = Lc .
Along y : the spread in k-vector is Δk = kξ /L = 2πξ /(Lλ).
If two waves with  k-vectors 0 and Δk along y are in phase at a certain point, they 
will be out of phase at a distance Δy such that ΔkΔy = 2π or Δy = Lλ/ξ .
Along z: same as along y.
Coherence volume: ΔxΔyΔz = L2λ4/(ξ2Δλ)
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A different look at coherence: 

L

ξ
Δλ

x
y

z
Δz

Δy

Δx

Behind this: Heisenberg! Photons 
in the coherence volume cannot 
be distinguished from each other



The solid angle corresponding to the area  ΔyΔz is ΔyΔz/L2.
If the solid angle of the emitted light is ≈θ 2, then only a portion (ΔyΔz/L2)/θ 
2 of the total emitted power illuminates the coherence volume. 
This is the coherent power.
Since ΔyΔz = (Lλ/ξ )2, the coherent power equals ≈(λ/ξθ )2 .
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This also explains the notion of “coherent power”: 

ξ

Angular divergence: solid angle 
Ω proportional to θ 2

Δλ

x
y

z

L


