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Echo-enabled harmonic generation
EEHG uses a strong dispersion element in the first modulator and adds
one more modulator-chicane (radiator-undulator is not shown).
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• First laser to generate energy modulation in electron beam
• First stong chicane to split the beam phase space
• Second laser to imprint energy modulation
• Second chicane to convert energy modulation into density
modulation
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Maximal harmonic number for EEHG?

HGHG up-shifting of the laser frequency is limited by the energy
spread of the beam and is typically ∼ 6 − 10. If EEHG promises a
higher frequency multiplication, then what is the maximal
harmonic number that can be obtained with EEHG? On paper it
can be as large as ∼ 103.
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Physics issues with EEHG

In reality there are factors that can limit the ultimate harmonic
number (see references at
http://www.slac.stanford.edu/∼stupakov/eehg.shtml):

Lattice nonlinearities and emittance effects—simulations with
elegant

Tolerances on magnetic field in the seed system

Amplitude and phase control of the seed laser

Control of the beam parameters (energy, energy chirp, etc.)

Energy diffusion due to incoherent synchrotron radiation (ISR)
in chicanes

Intra-beam scattering (IBS)

Conceptually important are the last two issues.
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Why ISR and IBS are important?
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structure in the energy distribution. The dominant process in ISR
and IBS is the diffusion in the momentum space. The diffusion
time ∝ (δE )2. It can smear out the energy modulation and result
in the diminished bunching factor at the final harmonic.
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Incoherent synchrotron radiation in the first chicane

For the nominal FERMI parame-
ters (E0 = 1.2 GeV, σE = 150
keV) and λr = 10 nm with EEHG
the width of the modulation is
∼ 0.2σE ∼ 30 KeV. The scaling
is ∆E ∼ σE/h.
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can be a fraction of keV. Choosing a larger bending radius (and longer
bends) in the chicane would decrease ∆σE .
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IBS

Account of IBS effect adds a collision term to the Vlasov equation. It is
derived using the following (see details in Stupakov, FEL 2011):

Due to the fast modulation of the distribution function over energy
in the regions of interest, the dominant term (now in the lab
frame) is diffusion over energy

coll. term =
1

2
D
∂2f

∂∆E 2

This term should be added to the RHS of the Vlasov equation.
The energy spread of a group of initially monoenergetic particles in
the beam increases with the distance s

d

ds
〈∆E 2〉 = D

(D has dimension of keV2/m)
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IBS

In the beam frame the distribution function is characterized by
the transverse temperatures Tx , Ty and T‖, T⊥ = mγ2σ2

θc
2,

T‖ = mc2σ2
η. Usually T‖ � Tx ,Ty (Tx ∼ Ty ∼ 70 eV, T‖ ≈ 2

meV assuming β = 20 m, E = 2 GeV and σE = 150 keV).
These temperatures are non-relativistic: T‖,T⊥ � mc2.

The diffusion coefficient actually varies in the phase space,
but we average it over x , y , θx , θy and it becomes the
function of the slice in the beam, z , and the location in the
lattice s: D(z , s). Because of this averaging, D can be
calculated neglecting the microbunching due to the energy
modulations of the beam.
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Diffusion coefficient

Analytical result for D

D(z , s) =
π1/2Λ

2γ
√
σθx(s)σθy (s)

(mec
2)2re

σx(s)σy (s)

I (z)

IA

Λ – Coulomb logarithm
IA = 17 kA
Relatively weak dependence on γ

D ∼
I

εNσ⊥
∼

I
√
γ

ε
3/2
N

√
β

In practical units, assuming Λ ≈ 8

D = 3.1
I [kA]

(εx [µm])(σx [100µ])

keV2

m
.
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Effect of IBS on EEHG—a simple model

In a simple model we assume that collisions occur in a drift section
of length ` separating the first chicane from the second
modulator—in this region the distribution function, being
modulated in energy, is most sensitive to the collisions.

Calculation of the bunching factor bh at h-th harmonic gives

bh = b
(0)
h e−`/L,

where b
(0)
h is the bunching factor without collisions and

L =
2E 2

Dh2(R
(2)
56 kL)2

Note h−2 scaling of L.
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Numerical examples

Consider a soft x-ray EEHG FEL scheme with emittance
ε = 1 µm, beam peak current of 1 kA, and the rms energy spread
100 keV. We also assume the rms transverse bunch size of 100
µm. This gives D = 3.1 keV2/m.
Three EEHG scenarios with the harmonic number m = 50, 100 and
200. For all 3 cases we assumed that the dimensionless modulation
amplitude were ∆E1/E0 = 3 and ∆E2/E0 = 6. The bunching
factors without collisions, and the decay distance L are shown in
Table below.

h ∆E1/E0 ∆E2/E0 b
(0)
h L (m)

50 3 6 0.088 80

100 3 6 0.071 22.5

200 3 6 0.047 5.6
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“Practical” example of NGLS EEHG seeding

Working parameters for NGLS (parameters and lattice are provided
by G. Penn)

Electron beam energy 2.4 GeV
Bunch peak current 600 A
Normalized emittance 0.6µm
Energy spread, σE 150 keV
Laser wavelength 200 nm
First/second energy modulation 0.5/1 MeV
Seed wavelength 1 nm

For these parameters, ideally, the bunching factor b200 ≈ 0.05.
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Lattice functions, dispersion and R56
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IBS Diffusion coefficient for peak current

Assuming Λ = 8
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With D ∼ 5 keV2/m, in 10 m an initially monoenergetic beam
would get the rms energy spread of

√
50 ≈ 7 keV.
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Challenge: Vlasov equation with diffusion

Challenge: the energy distribution of the beam changes
dramatically through the seeding system. Numerically solving the
Vlasov equation with diffusion is not an easy task. Fortunately,
there is a new convenient technique, due to N. Yampolsky and B.
Carlsten, that makes the problem solvable analytically.
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Beam distribution function

The technique works for linear beam dynamics with no collective
effects (wakefields).
The standard approach without IBS: the distribution function f

f (∆E , s)

satisfies the Vlasov equation. Let ~X = (∆E , s)T is the column
vector. If we know the 2×2 R-matrix from s = 0 to s

~X (s) = R · ~X (0)

The distribution function f (~X , s) is easily expressed through
f0(~X ) = f (~X , 0)

f (~X , s) = f0(R
−1 ~X )
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Fourier transformation of the distribution function

Make 2-dimensional Fourier transformation of f

f̂ (kz , k∆E , s) =

∫
dzd∆Ee i(zkz+∆Ek∆E )f (∆E , s)

f̂ also satisfies a (transformed) Vlasov equation. Let
~K = (kz , k∆E )

T is the column vector, then the distribution
function f̂ ( ~K , s) is easily expressed through f̂0( ~K ) = f̂ ( ~K , 0) via
the transposed matrix, RT

f̂ ( ~K , s) = f̂0(R
T ~K )
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Interpretation of the Fourier phase space

We can now think about the 2 numbers (kz , k∆E ) as a quasi-particle in a
2-dimensional Fourier phase space. When the beam is moving through a
lattice, quasi-particles are moving in Fourier phase space and carry the
value of f̂ with them.

Note that f̂ (kz , 0, s) is proportional to 1D Fourier of the current in the
beam. If the distribution function f is normalized by unity, then

|b(kz)| = |f̂ (kz , 0, s)|

is the bunching factor (|b(kz)|
2 determines the intensity of coherent

radiation at frequency ω = ckz).
In analogy with other types of quasi-particles in quantum physics (phonons,
plasmons, magnons, etc.) we can call these quasi-particles bunchions.
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Fourier transformation and diffusion

Why is f̂ good? It easily solves the diffusion problem:

1

2
D
∂2f

∂∆E 2
→ −

1

2
Dk2

∆E f̂ ,

the differential equation is replaced by an algebraic one.
To compute the effect of diffusion

f̂diff = e−(1/2)
∫s

0 D(s)k∆E (s)
2ds f̂no diffusion

with k∆E (s) the trajectory of the bunchion from initial to final
state and D(s) is the diffusion coefficient along the path.
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2D phase space

In the longitudinal 2D Fourier phase space, ~K = (kz , k∆E )
T

R =

(
1 R56

0 1

)
and (

kz(s)
k∆E (s)

)
= (RT )−1 =

(
1 0

−R56(s) 1

)(
kz(0)
k∆E (0)

)
or
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k∆E (s) = −R56(s)kz(0) + k∆E (0)
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2D phase space
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k∆E (s) = −R56(s)kz(0) + k∆E (0)
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Energy modulation in the Fourier phase space

What does the energy modulation in the undulator do to f̂ ?
Scattering and creation of new quasi-particles.

kz

k
DE

3kLf
^

f
^
J3(k

DEDEmod)

It splits a point (kz , k∆E ) into many points (kz + kLm, k∆E ) shifted
horizontally, m = 0,±1,±2, . . . (kL is the laser wavenumber) and
multiplies f̂ at the new location by Jm(k∆E∆Emod).
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Fourier phase space evolution in EEHG

Initial |f̂ | After the first modulator

After the first chicane After the second modulator

After the second chicane
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With σE = 150 keV we have
1/k∆E ≈ 5 keV. [The bunch is
assumed unrealistically short,
σz ≈ 3λL.]
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Diffusion in the phase space
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The suppression factor

e−(1/2)
∫s

0 D(s)k∆E (s)
2ds = 0.47

Hence the expected bunching factor due to IBS suppression is
2.5%.
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Adding ISR to IBS

DISR =
55

24
√

3

h̄e2c
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The suppression factor is 0.35, the bunching b200 = 0.017. As one can
see from these results, the Coulomb collisions represent a serious limiting
factor for the EEHG seeding in the range of harmonic numbers exceeding
102.
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Summary

While there are practical limitations for the maximally achievable
harmonic multiplication in EEHG, IBS and ISR set a conceptual
limit on h. It is due to the small energy spread in the structures
created by the first chicane in the phase space of the beam. A new
technique for calculation of the effect of the energy diffusion on
evolution of the beam distribution function was presented which
uses the Fourier transformation over the phase space variables. It
allows to analytically account for the IBS and ISR in EEHG. My
estimate of the maximal attainable h due to these effects would be
in the range 100-200.
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